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Y Abstract

“There are many articles discussing the solution of boundary value prob-
lems on various parallel machines. The solution of initial value problems
does not lend itself to parallelism, since in this case one uses methods that
are sequential in nature.

Here we develop a parallel scheme for initial value problems based on
the box scheme and a modified recursive doubling technique.

Fully implicit Runge Kutta methods were discussed by Jackson and
Norsett (1986) and Lie (1987). Lie assumes that each processor of the
parallel computer having vector capabilities. / .o )
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1 Introduction

We consider the solution of linear initial value problems on a hypercube. “By a
hypercube we intend a distributed memory MIMD computer with communica-
tion between processors ... via a communication network having the topology of
a p—dimensional cube, with the vertices considered as processors and the edges

as communication links” (Keller and Nelson, 1987). See also Fox (1984, 1985,




1987) and Fox and Otto (1984). Our method of solution is based on the box

scheme to discretize the system of initial value problems
vy =Ay+f(2)

y(e) =w
where y and f are n—dimensional vectors and A is an n X n matrix. The resulting
system of equations is solved by a modified version of the recursive doubling
technique (see Stone, 1973).

In the next section, the discretization is described and the resulting system
of equation is given. Section 3 will describe the modified recursive doubling
technique and its application to our system.

It will be interesting to experiment with the method and compare the results

to a sequential initial value solver of the same order.

2 The Single Step Method

Consider the system of initial value problems

y = Az)y + f(z), alz<b
(1)
y(a) =w
where
Y =(yl"'~7yn)Ta f=(f1(a:),...,fn(:z:))T,
y6 2(!/;0,---,!/:;0),
and
A=a;(z), 1<£4,5<n
Let
z; = a+ jh, 1=0,1,...,m (2)
where
het=8 (3)




be a uniform mesh. The box scheme (see e.g. Keller, 1976), applied to (1) yields
vit1 =yith {A,-+§ (vi+1 +y;) /2+ f,~+§} ;

b (4)

Yo =%
AJ-+% =A(a+ (j+-;—)h)
ey =1+ (5+3)4)

and y; is the approximation to y(z;).

where

Let {5, 1 = 1,2,...,s} be a strictly increasing sequence such that j; > 0
and j, = m. We shall compute the solution at the points z; = z;,. Let ®; be

n X n matrices defined for each ¢

Ji—1

h -1 h
P; = H [—EAH'% I+'2-AJ~+% )

J=Ji-1

t=1,2,...,s, (5)

where 7o = 0 and h is sufficiently small so that I — % A; +1 are nonsingular.

Similarly let the n-vector ¢; be

h 1 h -
vi = (1 2 A:'.-—%) <I+ 2 AJ’-“%) Yt
(6)

h -1
+h(I-§Aj',_§> fj.,_%, t=1,2,...,s,
where
§o=0 (7)
and
- h -1 h -
Yit1 = (I 2 Aa‘+§+5.~_,) [(I+ §A5+§+j.«_1) Uit hfjeiegi,

(8)
J=0, ., —Ji-1— 2
Then it can be easily shown as in Keller and Nelson (1987), that

Yj.' =P Yi._, t+ @i, 1=12,...,s (9)
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Remarks

1. The matrices to be inverted are of order n, the number of equations in the

original system {1).

2. The last factor in the product defining ®; is the matrix required in com-

puting ;.

3. The vector §;,—1-j;_, can be computed by (7) - (8) in the same loop one

computes ®; since it requires the same matrices.

3 Parallel Evaluation

To solve (9) on a hypercube with p = s processors, one can modify the recursive
doubling technique developed by Stone (1973).

Let
by =&y + o1
(10)
b]' = ¥j, j:2,3,...,s
and let Y;(j) be a function of b;,b;_1,...,bj-i+1,®;,...,®;_i+1. Then the fol-

lowing results can be proved using similar arguments as in Stone(1973).

Theorem. Let Y;(J) satisfy the recurrence relation
Yi1(7) = 110) + &,Yi(5 - 1), 4,721 (11)
with boundary conditions
ig)=b;, 721
Yi(7)=0, j7<0ori<O.
Then

Yi+a(j) = Ya(j) + H Q2_1'—k—a+lyt'(.7- - S) (13)

k=j—s+1




(i)
Y.-(j)=i{ i <1>j-,+k+1}yl(k), i>ix1, (14)

k=1 | s=k+1

(ii1) for
i>252>1, Yi(5) = v, (15)

Corollary

Yu(y) = Yi(5) + { ﬁ ‘I’zj—k-s‘+1} Yig-4), 45>1 (16)
k=j—i+1

This corollary provides the recursive doubling algorithm for the solution of

(9). Let

(]
Hq’j-—kﬂ J<t
) k=1
M ={ (17)
J
II ®j-k+1-, 524
\ k=j—i+1

then (16) can be written as

Y2i(§) = Vi) + Mi()Ya(5 - 4) §,521

(18)
M2i(5) = Mi(5) Mi (5 — 1) i,j>1
with boundary conditions
Ml(]) = QJ‘: 721
(19)

MI(J)ZI) 'SOOI'JSO
We are now ready to state the algorithm.

Algorithm
For i =1 to s/2 in steps of 1 do:

Y2(0) = Yi() + Mi(§)Yi(G —4) i<j<s

M3i(5) = Mi(5)Mi (5 - 4) J s
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Next t.

From our theorem, Y,(j) = y;, for 1 < 5 < s, so that Y s is the solution of (9).

We note that for each ¢, the indices pertaining to j are executed simultaneously

on s processors. Since t doubles during each iteration, log, s iterations are

required for computation.
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